

PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2018 MATHEMATICS - I

Two Hours

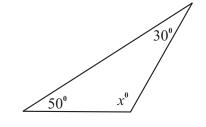
Grade 08

Name / Index No.:

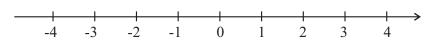
PART - I

- Answer question number 01 to 20 on this paper itself. Correct answer for each question carries 02 marks.
 - 01. Following is a number pattern. Write its second and third terms.

7,, 16, 19, 22, ...


02. The direction of P an seen from A is given as "S 45° W". Represent it on a sketch diagram.

A•


- 03. Solve, 5m-2=18
- 04. Find the value of, (-8) (-2)
- 05. Simplify, 3a-2b-a+3b-2
- 06. Number of coconuts plucked from each tree is given below.

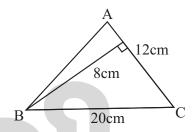
8, 10, 3, 8, 4, 10, 12, 11, 11, 8 find the median.

07. Find the value of x,

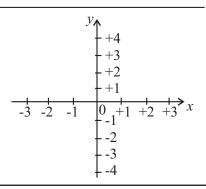
08. Represent x < +2 on the number line.

- 09. Find the value of using prime factors $\sqrt{144}$
- 10. Write 20% as a fraction and express it in the simplest form.

11. Simplify,


 $\frac{1}{3}$

12. Dar a minor sector on the given circle and shade it.


- 13. Given below are the sets of lengths chosen to draw a triangle. Underline the set which could be used to draw the triangle.
 - (i) 6cm, 5cm, 12cm
- (ii) 6cm, 6cm, 10cm
- (iii) 4cm, 6cm, 10cm

- 14. Write 36a², as a power of a product
- 15. Find the area of the triangle ABC.

Education

- 16. If a cuboid shape of vessel having length 20cm, breadth 5cm and height 8cm is filled and then pour it to a vessel of 1 I find the volume of empty space of it in cubic centimeters.
- 17. A container has 5 red pens, 3 blue pens and rest are black of same type. If the probability of taking $\frac{5}{12}$ a red pen out from that containers is find the number of black pens in it.
- 18. If the distance between two places of a scale diagram drawn to the scale 1:50000 is 12cm. Find the actual distance.
- 19. Sri Lanka belongs to time zone. At what time, Sri Lanka can watch the start of the cricket match, which starts at 9.00 a.m. in Kenya, which belongs to the +3 time zone.
- 20. Draw the line y = +2 on the given Cartesian plane.

PART - II

MATHEMATICS

• Answer to the first question and 04 other questions.

First question carries 16 marks and other questions carry 11 marks.

- 01. (a) Answer the following questions by resuming all activities you had done in the following lessons.
 - (i) Draw a circle of any size, mark two points on it and name them as A and B. (02m.)
 - (ii) Give a name for the part of the circle between A and B. (01m.)
 - (iii) Join A and B with a straight line. What is the name use for that straight line AB? (01m.)
 - (b) Fill in the blanks.

 - (ii) The straight line segment joining the center of a circle to any point on the circle is called a(01m.)
 - (c) Following table shows the results obtained by taking a card randomly from a pack of cards numbered from 1 to 6.

number	1	2	3	4	5	6
tally marks EQUC	W P	M		////		M
number of occurrences	06	05	07		08	

(i) Copy the table to your answer sheet and fill the blanks.

(02m.)

(ii) What is the fraction of success of getting the card with number 2?

(02m.)

(iii) Which number of card has the highest fraction of success?

(02m.)

Leaf

02. Following values show the number of liters of drinking water, bought by 10 customers from water purifying center.

15 32 16 18 09 25 30 26 27 25

(i) What is the mode?

(01m.)

අධයාපන

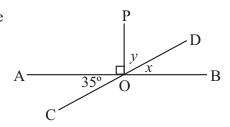
Steam

(ii) Find the median of above data.

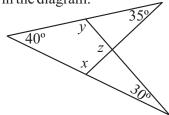
(02m.)

(iii) Calculate the mean amount of water bought by a person.

(02m.)

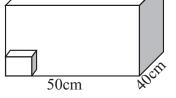

(iv) Copy the following stem and leaf diagram on your answer sheet and enter the above data on it. (03m.)

0 1 2 3


(v) Another person has bought 35 liters of water and it is not included in above data. Find the range of the data after including 35 liters to the data set.

(02m.)

- 03. (a) Straight lines AB and CD intersect at O. PO is the perpendicular drawn to O.
 - (i) By giving reasons find the value of x. (02m.)
 - (ii) Find the value of y. (02m.)


- (b) Answer the following questions considering the information marked in the diagram.
 - By giving reasons find the value of x. (02m.)
 - (ii) Find the value of y. (02m.)
 - (iii) By giving reasons find the value of Z. (03m.)

- 04. Following is a cuboid shaped box with base length of it is 50cm and breadth of it is 40cm. It is proposed to pack with cubical shaped small boxes having sides of 10cm.
 - Calculate the volume of a cubical shaped box.

(02m.)

(ii) Calculate the number of boxed that could be packed on the base of the

(iii) If 6 layers of drug boxes are loaded, such that the volume of cuboid is totally occupied, find the height of the cuboid.

(02m.)

(iv) Find the volume of cuboid.

(ii)

- (03m.)
- (v) Find the capacity of a vessel having the volume same as a the cuboid.

(02m.)

05. (a) (i) Draw a number line and represent +3, 1.5 on it.

- (02m.)
- Arrange above group of numbers in ascending order using answer for (i). Draw a cartesian plane having its and axis from -5 to +5. (b) (i)
- (01m.)(02m.)

(ii) A(-3,2), B(2,2), C(2,-3), D(-3,-3)(03m.)

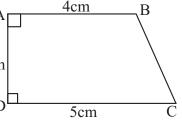
- (iii) Write the Y coordinate of the point C. (01m.)
- (iv) Join the above points to gain a closed figure.

(01m.)

AB find equation.

(01m.)

- E


06. (a) Following is a rough sketch showing locations T and M as seen from O. T is located 25m away in the direction N 70 E.

- Write the direction of M as seen from O according to above notation. (02m.)W
- (ii) If L is located in the direction of N W and 40m away from O, show it using a rough sketch. (03m.)
- (b) Following is a sketch of a floor plant of a building.

(ii) Draw the rough sketch of above figure.

- If 1cm represents 1m write that scale as a ratio. (02m.)
 - (02m.)
- (iii) According to the scale drawing, find the true length of 3cm BC. (02m.)

- 07. (a) (i) Construct the straight line segment AB = 6.4cm.
- (02m.)

(ii) Construct the triangle ABC where, $AC = 5 \text{cm} \in BC = 5.5 \text{cm}$.

(03m.)

(iii) Measure and write the magnitude of angle ABC.

(01m.)

- (b) Simplify,
 - 3(y+1)-(y-2)(i)

(03m.)

(ii) x=3, y=-1, 5x+y find the value.

(02m.)

ANSWER PAPER

$\mathbf{p}_{\mathbf{\Lambda}}$	R_1	' _ I

01. $10, 13$		PART - I		
02. In a range of the proof of	01.	10, 13	1+1	02
03. $5m = 20$	02.	↑ 101 f		02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03.			02
06. $\frac{8+10}{2} = 9$ 07. $x = 100^{\circ}$ $(x + 30 + 50 = 180^{\circ}) - 1$ 08. $\frac{2^{2} \times 2^{2} \times 3^{2}}{2 \times 2 \times 3 = 12}$ 01. 02 10. $1:5$ $(20:100 1)$ 11. $3 \times \frac{3}{1}$ 9 12. 02 13. $6 \text{cm}, 6 \text{cm}, 10 \text{cm}$ 02 14. $(6a)^{2}$ 01 02 02 03 04 05 07 08 07 08 08 09 01 00 00 00 00 00 00 00 00	04.			02
$ \frac{8+10}{2} = 9 $ 01 02 Education 07. $x = 100^{\circ}$ $(x + 30 + 50 = 180^{\circ}) - 1$ 08. $ \frac{2^{2} \times 2^{2} \times 3^{2}}{2 \times 2 \times 3} = 12 $ 10. $1:5$ $(20:100 1)$ 11. $3 \times \frac{3}{1}$ 9 12. $ 02$ 12. $ 02$ 13. $6 \text{cm}, 6 \text{cm}, 10 \text{cm}$ 02 14. $(6a)^{2}$ 01	05.	2a + b - 2		02
Education 07. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 08. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 09. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 10. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 11. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 12. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 13. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 14. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 15. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 16. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 17. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 18. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 19. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 11. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 12. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 13. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 14. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 15. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 16. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 17. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 18. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 19. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 11. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 12. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 13. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 14. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 15. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 16. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 17. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 18. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 19. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 11. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 11. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 12. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 13. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 14. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 15. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 16. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 17. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 18. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 19. $x = 100^{\circ}$ ($x + 30 + 50 = 180^{\circ}$) - 1 19. $x = 100^{\circ}$ ($x + 3$	06.		01	
Education 07. $x = 100^{\circ}$ $(x + 30 + 50 = 180^{\circ}) - 1$ 08. $x = 100^{\circ}$ $x = 10$		$\frac{8+10}{2} = 9$	01	02
$(x + 30 + 50 = 180^{\circ}) - 1$ 08. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			cat	ior
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07.			02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08.	+2 x	1+1	02
$ \begin{array}{c ccccc} (20:100 & 1) & & & & & \\ 11. & 3 \times \frac{3}{1} & & & & \\ 9 & & & & \\ 12. & & & & \\ 13. & 6cm, 6cm, 10cm & & & \\ 14. & (6a)^2 & & & \\ 01 & & & \\ 02 & & & \\ \end{array} $	09.			02
9 01 02 12. 02 13. 6cm, 6cm, 10cm 02 14. (6a) ² 01	10.			02
12. 02 13. 6cm, 6cm, 10cm 02 14. (6a) ² 01	11.	3 x $\frac{3}{1}$	01	
13. 6cm, 6cm, 10cm 02 14. (6a) ² 01		9	01	02
14. (6a) ² 01	12.			02
	13.	6cm, 6cm, 10cm		02
$(6^2 a^2 \to 1) \qquad \qquad 01 \qquad 02$	14.	(6a) ²	01	
		$(6^2a^2 \to 1)$	01	02

15.	$\frac{1}{2}$ x 12cm x 8cm	01					
	48cm ²	01	02				
16.	Volume of the cuboid = 800cm^3	01					
	1 <i>l</i> - 800cm ³						
	200cm ³	01	02				
17.	Number of black pens = 4		02				
18.	1:5000						
	12cm : 5000 x 12cm						
	12cm 60000cm						
	600m		02				
19.	11.30 a.m.		02				
20.	↑ ^V		02				
	2						
			40				
\top	PART - II						
01.	(a) (i) Marking the point A	01					
	Marking the point B	01	02				
	(ii) Arc						
	Major arc Minor arc		01				
	Semi						
	(iii) Chord		01				
	(III) Chord		01				
	(b) (i) Diameter		01				
	(ii) Radill	01	02				
	(iii) Arc	01 01	02				
	Sector (iv) Chord	01	02				
	Arc						
	(c) (i) /// // ///		02				
	04,05						
	$(ii) \frac{5}{35}$		02				
	(iii) 5		02				
			16				
	I .	ı					

ANSWER PAPER

			1				5 4	0.1	
02.	(a) (i)	25		01		(11)	5 x 4	01	
	(ii)	For ascending order	01				20	01	02
		25	01	02		(iii)	10 x 6	01	
	(iii)	Sum 223	01				60cm	01	02
		<u>223</u> 10	01			(iv)	50 x 40 x 60	02	0.2
		22.3 <i>l</i>	01	03			120 000cm ³	01	03
	· \		01				(Give marks for		
	(1V)	For the correct diagram (2 marks if the leaves are not in ascending order)		03			alternatives)		
		in ascending order)				(v)	120 000 1000	01	
	(v)	35 - 9	01				120 /	01	02
	(*)	26	01	02					11
				11	_			-	
				11	05.	(a) (i)	If 2 numbers marked	01	
03.	(a) (i)	35°	01				correctly	01	
		Vertically opposite angels	01	02			If all 3 numbers marked	01	02
	(ii)	y = 90 - 35 Edu	Cont	ion			correctly	01	02
	(11)	$= 55^{\circ}$	01	02					
	4.5 (5)	x = 180 - 40 - 35			Н	(11)	$-1\frac{1}{2}$, 1.5, 3		01
	(b) (i)	x - 180 - 40 - 33 = 180 - 75	01			(b) (i)	For the Cartician plane		02
		$=105^{\circ}$	01						
		103	01	02		(ii)	1 mark for each point		
							4.0000		03
	(ii)	y = 180 - 40 - 35	01			(iii)	_3		01
	(11)	= 180 - 70				· '			
		$=110^{0}$	01	02			For the rectangle		01
	(;;;)	z = 360 - 105 - 110 - 40	01			(v)	y = 2		01
	(111)	= 360 - 255	01	03					11
		$= 300^{\circ} - 233^{\circ}$ = 105°	01	03	_			-	=
		Sum of the angles of a	01						
		quadrilateral is 360°			06.	(a) (i)	$(S 50^{\circ} E)$		02
						(ii)	M		
						(11)	LE IN		
				11					
							\longleftrightarrow 0		
04.	(a) (i)	10 x 10 x 10					Drawing OL		
		or					Marking the angle	01	
		103	01				Marking the distance		
		1000cm ³	01	02				01	
								01	03
Щ				ш		I			

ANSWER PAPER

_					1	-	
		1cm 100cm 1:100 For a correct scale diagram	01 01	02 02			
	(iii)	Obtaining the length		02 11			
07.	(a) (i)	Drawing AB For C	01	02			
	(=-)	BC AC	01 01	03			
	(iii)	For the measurement of angle B		01			
	(b) (i)	3y + 3 $-y + 2$ $2y + 5$	01 01 01	03			
	(ii)	5(3) + (-1)					
		15 - 1 14 Edu	c_{01}^{01} t	02			
					අධ්යාපන		

ONLINE CLASSES - 2025. VEW ADMISSIONS

2ம் தவணை வகுப்புகள்

தரம் 6 முதல் O/L வரை

அனைத்து பாடங்களும் ஒரே கல்வி நிறுவனத்தின் கீழ் ...

இலங்கையின் எப்பாகத்திலிருந்தும் ZOOM APP மூலம் எமது வகுப்புகளில் இணைந்து கொள்ள முடியும்

JOIN NOW WWW.KALVI.LK

075 287 1457